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A comparison study of the asymptotic behavior between different compression techniques
is reported. We show that by applying the Kronecker product approximation, the storage of
a three-dimensional demagnetizing tensor with N6 entries can be reduced to OðN2Þ, show-
ing a superlinear compression behavior. When magnetization and magnetostatic field vec-
tors are stored in compressed forms, a superlinear speedup of a field evaluation is gained.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The increasing industrial demand for large scale simulations leads to huge scale matrix equations, which require a
high computational power. Various methods have been developed for data compression to treat such large matrices.
Such techniques include Fast Multipole Method (FMM), H-matrices etc. [1,2]. Recently it has been shown that matrices,
arising from the discretization of integral equations with fast decaying kernels, possess a good Kronecker product
approximation [3–5]. Those matrices normally have a very small rank (R� N), which makes application of low-rank
approximations feasible. More details on the Kronecker product approximation are given in Section 3. The advantage
of this type of approximation compared to other techniques is its superlinear compression property. If in large scale
three-dimensional simulations one space dimension is discretized by N cells, then a total number of cells is N3. Direct
integration algorithms will scale with a total number of cells squared giving N6 for the full N3 � N3 matrix. The Kroneck-
er approximation allows us to store only OðN2Þ entries, which is less than the order of the original matrix. In the fol-
lowing we apply this type of approximation to the point-function demagnetizing tensor discretized on a tensor
product grid, with N 1 nm cubic cells in each dimension. Using the demagnetizing tensor in the compressed form,
the magnetostatic energy is calculated for problem sizes ranging from 103 cells to 8� 106 cells. Corresponding problem
sizes range from 13 Mb to approximately 500 Tb of RAM, for double precision numbers. Results of memory consumption
are then compared with other common compression techniques. Magnetostatic energy and magnetization vectors are
compressed using Kronecker format and evaluation times are also plotted versus problem sizes. All computations were
performed using a 2 GHz processor with 3Mb L2 cache.
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.
.V. Goncharov), g.hrkac@sheffield.ac.uk (G. Hrkac), j.dean@sheffield.ac.uk (J.S. Dean), t.schrefl@shef-

http://dx.doi.org/10.1016/j.jcp.2009.12.004
mailto:a.goncharov@sheffield.ac.uk
mailto:g.hrkac@sheffield.ac.uk
mailto:j.dean@sheffield.ac.uk
mailto:t.schrefl@sheffield.ac.uk
mailto:t.schrefl@sheffield.ac.uk
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


A.V. Goncharov et al. / Journal of Computational Physics 229 (2010) 2544–2549 2545
2. Discretization

The brief introduction of the problem being solved is given in this section. In following calculations the magnetostatic
scalar potential formalism is used for the field evaluation inside the ferromagnetic body. The magnetic scalar potential at
the position given by r and induced by the magnetization distributed over the domain X0 is given by the following volume
integral [6]:
/ðrÞ ¼
Z

X0
Mðr0Þ � r0 1

jr� r0j

� �
d3r0 ð1Þ
The magnetostatic field at location r is then given by
HðrÞ ¼ �r/ ¼ � 1
4p
r
Z

X0
Mðr0Þ � r0 1

jr� r0j

� �
d3r0 ð2Þ
This integral can be quite difficult to solve analytically for the arbitrary shaped ferromagnetic body with a nonuniform mag-
netization distribution. The value of the field is found numerically using discretization. The computational domain X0 is di-
vided into computational cells. The integration over the domain with nonuniform magnetization is split into integrals over
elements where magnetization is assumed to be constant. It is known that for a uniformly magnetized ferromagnetic body
the demagnetizing field can be computed using the demagnetizing tensor [7]. In this case the new discretized equation is
given by:
HðriÞ ¼
XN3

j¼1

NðriÞjMj; ð3Þ
where N3 is the total number of cells and
NðriÞj ¼ �
1

4p

Z
V j

rr0 1
jri � r0j

� �
d3r0 ð4Þ
is the point-function demagnetizing tensor for the jth cell. The field is evaluated at location ri, which is the centre of the ith
cell. Integrals in (4) over cubic cells can be evaluated analytically as in [8]. The tensor has nine components and it is conve-
nient to rewrite Eq. (3) in component form with ri replaced by i index:
Hp
i ¼

XN3

j¼1

Npq
ij Mq

j ð5Þ
Indices p and q in (5) run from 1 to 3 (for x, y and z, respectively) and same index implies summation over all components of
the magnetization. Eq. (5) can be written in matrix form as:
Hp ¼ NpqMq; ð6Þ
where Npq is now a N3 � N3 matrix with N6 entries and Hp and Mq are vectors containing cartesian components of field and
magnetization (both have length N3).

3. Kronecker approximation

To show how the Kronecker approximation arises we shall start from the Eq. (6) for the magnetostatic field. Let us limit to
the case where p ¼ q ¼ 1, i.e. HxðrÞ ¼ Nxxðr; r0ÞMxðr0Þ. The procedure for all other cases is the same. On a cartesian grid, the
indices i; j in (3)–(6) are replaced with ði; j; kÞ and ði0; j0; k0Þ, respectively. Then (5) can be written in tensor form:
Hx
ijk ¼

XN

i0¼1

XN

j0¼1

XN

k0¼1

Nxx
ijki0 j0k0M

x
i0 j0k0 ð7Þ
where Hx
ijk ¼ Hxðxi; yj; zkÞ is the x-component of the magnetostatic field in the centre of the ðijkÞ cell and Mx

i0 j0k0 is the constant
magnetization in the ði0j0k0Þ cell. The matrix Nxx can be viewed as a tensor:
Nxx
ijki0 j0k0 ¼

Z
Vi0 j0k0

Nxx xi; yj; zk; x0; y0; z0
� �

dx0dy0dz0 ð8Þ
If the kernel Nxx decays fast with the distance between the source and the field points, then the full tensor (8) has a small
rank and can be approximated by a data sparse tensor [4,5]. If this is the case then the kernel allows a separable approxi-
mation with a small rank R� N:
Nxxðx; y; z; x0; y0; z0Þ ¼
XR

r¼1

Prðx; x0ÞQ rðy; y0ÞRrðz; z0Þ; ð9Þ
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By substituting (9) in (8) the low-rank tensor product approximation is obtained:
Nxx
i;j;k;i0 ;j0 ;k0 ¼

XR

r¼1

Pr
i;i0Q

r
j;j0R

r
k;k0 ; ð10Þ
where R is the rank of the approximation and Kronecker factors Pr ; Qr ; Rr are N � N matrices, computed as follows:
Pr
i;i0 ¼

Z x1
i0

x0
i0

Prðxi; x0Þdx0;

Q r
j;j0 ¼

Z y1
j0

y0
j0

Q rðyj; y
0Þdy0;

Rr
k;k0 ¼

Z z1
k0

z0
k0

Rrðzk; z0Þdz0

ð11Þ
where x0
i0 ; x1

i0 ; y0
j0 ; y1

j0 ; z0
k0 ; z1

k0 are boundaries of the ði0j0k0Þ cell in x; y and z directions, respectively. If the analytical approx-
imation (9) is not known, then the Kronecker factors can be computed using numerical optimization algorithms, such as an
alternating least squares (ALS) [11]. More details on the Kronecker approximation and its existence for matrices arising from
the discretization of integral operators with fast decaying kernels in two and higher dimensions are given in [3,10]. In the
remaining part of this section a brief description of how the theory is applied to the matrix Eq. (6) is given. It will be shown
how the demagnetizing matrix (4) can be written in Tensor product form using the Kronecker approximation. We will dis-
cuss how the Kronecker approximation can be computed by first computing a Tucker decomposition [12] of the demagne-
tizing tensor which is then modified to compute the Kronecker approximation. For this purpose we write the approximation
(10) in equivalent form using tensor product notation:
N ¼
XR

r¼1

Pr � Q r � Rr; ð12Þ
where Pr ; Q r and Rr are N � N matrices of order N, R is a Kronecker rank and �means tensor product. If Kronecker factors in
(12) are viewed as N2 vectors then (12) represents a canonical decomposition of a 3D N2 � N2 � N2 tensor:
N ¼
XR

r¼1

ur � vr �wr

nlmn ¼
XR

r¼1

ulr � vmr �wnr

ð13Þ
Now ur; vr and wr are rth columns of N2 � R matrices U;V and W. These columns are N � N Kronecker factors from Eq. (12)
packed in a column-wise format. Eq. (13) is a sum of rank-1 tensors or triads and is called PARAFAC (PARAllel FACtors)
decomposition [9]. Equivalence of Eqs. (12) and (13) follows from the properties of the Kronecker product of matrices
and was shown in details for two dimensions in [3]. Extension to the three-dimensional case is straightforward. Assembly
of the tensor out of the matrix can be done by using the bijection method as in [10]. It follows that for an N3 � N3 matrix
arising from a 3D tensor product grid any row I and column J can be treated as an N � N � N tensor with a column-row-wise
ordering. Then matrix indices I and J can be replaced with triplets:
I ¼ iþ ðj� 1ÞN þ ðk� 1ÞN2;

J ¼ i0 þ ðj0 � 1ÞN þ ðk0 � 1ÞN2
ð14Þ
where 1 6 I; J 6 N3 and 1 6 i; j; k; i0; j0; k0 6 N. Now indices (ijk) and (i0j0k0) give positions of field and source cells in
the cartesian grid and the field is calculated using a six-dimensional tensor as: hp

ijk ¼ npq
ijki0 j0k0

�mq
i0 j0k0

. This tensor can be trans-
formed to the three-dimensional form if indices are combined as follows: (i; i0), (j; j0) and (k; k0). Each combination will pro-
duce one dimension of length N2 of a resulting 3D tensor as follows:
l ¼ iþ ði0 � 1ÞN
m ¼ jþ ðj0 � 1ÞN
n ¼ kþ ðk0 � 1ÞN

ð15Þ
If matrices P; Q and R in (12) are chosen as: P ¼ ½ðk; k0Þ�; Q ¼ ½ðj; j0Þ�; R ¼ ½ði; i0Þ�, then (12) follows from the property of the
Kronecker product. By looping through indices (ijk) and ði0j0k0Þ and using relations (15) for ðlmnÞ indices the N2 � N2 � N2 ten-
sor can be assembled for the compression in form (13).

Applying canonical decomposition to the full size problem is an elaborate computational task. There are various methods
described elsewhere [11], but they will all fail for large industrial problem sizes. However, the approximation (13) can be
obtained in two steps with a relatively small effort. At the first step, the demagnetizing tensor is compressed into the Tucker
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form using a 3D ACA (three-dimensional adaptive cross approximation) algorithm described in [12]. The algorithm requires
only OðNÞ operations and does not require storage of the original full tensor. The result is the Tucker decomposition of the
original full size problem:
N ¼ G�1A�2B�3C;

nijk ¼
XR

l¼1

XR

m¼1

XR

n¼1

glmn � ail � bjm � ckn ð16Þ
where G is the R� R� R core tensor, A; B and C are orthogonal Tucker factors, each of size N2 � R and �n stands for an n-
mode tensor-matrix multiplication. The second equation represents element-wise multiplication of factors with the core.
Brief description of the Tucker format and its properties can be found in [13]. Even though the memory storage requirement
is now reduced from N6 down to R3 þ 3RN2, which is already asymptotically superlinear, the presence of the 3D core brings
large overhead for computations. Since the Tucker rank is usually small compared to N the core can be effectively com-
pressed into the canonical form. For this purpose the Levenberg–Marquardt algorithm has been used [14]. Usage of the non-
linear optimization is justified by the small R of the core. The core can be expressed now as:
G ¼
XR

r¼1

g1
r � g2

r � g3
r ; ð17Þ
where g1
r ; g2

r ; g3
r are rth columns of R� R PARAFAC factors. Substitution of (17) into (16) gives the required approximation

(13), which is equivalent to (12). Storing demagnetizing tensor in the Kronecker format offers not only excellent compression
quality but also a superlinear speedup in computations. To make an evaluation of the matrix-vector product in (6) compu-
tationally effective, field and magnetization vectors are also viewed as N � N � N tensors and compressed into canonical
forms using ALS algorithm [11]:
Hp ¼
XF1

r¼1

hp1
r � hp2

r � hp3
r

Mq ¼
XF2

r¼1

mq1
r �mq2

r �mq3
r ;

ð18Þ
with vectors hpi
r and mqi

r being columns of the ith N � R PARAFAC matrix and p and q stand for x; y; z components. The rank
F2 has to be equal to the product RF1, where R is the Kronecker rank of the demagnetizing tensor. Details of the matrix-vector
evaluation in Kronecker formats are given in [10]. After the field has been computed the magnetostatic energy is evaluated in
OðNÞ operations using the inner product of field and magnetization tensors in PARAFAC format:
wmag ¼
X3

p

XF1

r1

XF2

r2

hhp1
r1 ;m

p1
r2 i � hh

p2
r1 ;m

p2
r2 i � hh

p3
r1 ;m

p3
r2 i ð19Þ
4. Results

The compression technique described in the previous section is now applied for a calculation of the magnetostatic energy
of the ferromagnetic cube for two cases. In the first case the energy is calculated for the uniform magnetization along the
positive Z direction. This case was chosen deliberately because the energy for a uniformly magnetized cube is known from
the theory and computed result can be checked with this value. The magnetostatic field for such a case is simply given by
Hz ¼ �NzzMz, where Mz ¼ Msmz. For the sake of simplicity, magnetization of saturation is set to 1, then the field Hz is equal to
�mz=3 and the energy density: l0wmag ¼ m2

z=6. For the second case the magnetization in the cube is allowed to curl in XY
plane, so all three components of the magnetization were used. Due to the symmetry, only three components of the demag-
netizing tensor from Eq. (6) were used for the field calculation. For the first case with uniform magnetization the compres-
sion (12) is applied to the Nzz discretized tensor. Field and magnetization vectors mz and Hz are also compressed into the
Kronecker format as in (18). The technique is applied to a number of discretization cases involving up to 8 million compu-
tational cells. Corresponding number of cells in one dimension N ranged from 10 to 200. Results of memory savings gained
by using Nzz in compressed form are shown in Fig. 1. The graph shows amount of RAM (log scale) required to store Nzz in
megabytes versus N (also log scale). Five curves are shown in Fig. 1. One is serving as an example of memory consumption
for a full problem size if no compression is applied to Nzz. There are also two curves representing asymptotical behavior of
the memory requirement for some advanced techniques used today: H-matrix with OðN3 log N3Þ and FMM with OðN3Þmem-
ory cells, respectively. Asymptotical curves mean that there are no prefactors included, only the dependence on N is plotted.
The third asymptotic is a superlinear Kronecker curve with OðN2Þ behavior (shown with triangles pointing up). This curve
shows a vast improvement over the linear (OðN3Þ) one. The last curve presented in Fig. 1 is real compression data with a pre-
factor of 3R. Rank R, which is vital for the quality of the compression is ranging from 6 to 17. These values of rank guaranteed
that the error in magnetostatic energy was below 1� 10�2. It can be seen that the experimental curve follows a superlinear
trend and even outperforms the linear asymptotic for N P 40. For the largest problem size tested with 8 million cells the



10 100
Number of cells in one dimension  ( N )

0.01

0.1

1

10

100

1000

C
PU

 ti
m

e 
 ( 

m
s 

)

t (Field)
t (M decomp)
t (Energy)
t (M comp)

Fig. 2. CPU times measured in milliseconds. Times are plotted as follows: the top curve with triangles down corresponds to compression of the mz , the
curve with triangles up shows decompression into the vector form of mz and Hz , the curve with circles shows time for matrix-vector evaluation in Kronecker
format and the curve with squares is for energy calculation. All are versus N – number of cells in one dimension.

10 100
Number of cells in one dimension  ( N )

0.001
0.01
0.1

1
10

100
1000
1x104
1x105
1x106
1x107
1x108

R
A

M
  (

 M
b 

)

Full size
Kronecker
FMM
H-matrix
Kronecker (actual)

Fig. 1. Comparison of asymptotical compression behavior for different compression techniques versus grid size in one dimension. The line with square
symbols is the full problem size, with triangles down is N3 log N3 (H-matrix), with diamonds is N3 (linear, FMM) and with triangles up is N2 (superlinear,
Kronecker). In addition there is also an experimental compression curve (circles) which contains a prefactor of 3R which follows a superlinear trend.
Nevertheless for N P 40 it outperforms the linear asymptotic.
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amount of RAM required to store Nzz is only 15 Mb. To test a speedup provided by the compression, the CPU time required for
calculation of the magnetostatic field was measured during computations. Results of these findings are presented in Fig. 2.
The curve shows a drastic decrease in evaluation time of the matrix-vector product. For the problem with 8 million cells the
time spent is only 10 ms. Magnetostatic energy calculations using formula (19) requires less than 0.1 ms for this problem
size. However, if the dynamic micromagnetic simulations are considered, then there are two linear complexity problems
which have to be considered. At each time step, compression of the magnetization into the PARAFAC form (18) is done before
energy calculation. After the effective field has been computed the field and magnetization tensors must be converted back
into the vector form for the time integration. This can be done in OðN3 þ N2Þ operations, which is a linear complexity for the
original N3 � N3 matrix. The energy for the second case, where all three components of the magnetization are used, is cal-
culated for the problem with N3 ¼ 8� 106 cells. Due to the cubic symmetry only 3 components of the demagnetizing tensor:
Nxx; Nxy and Nxz need to be compressed. The compression rank for the tensors equal to R ¼ 18 and the error in the magne-
tostatic energy is 3� 10�3. The CPU time needed for the matrix-vector evaluation, energy computation and decompression
are 111 ms, 4.5 ms, and 7.8 s, respectively.
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For the practical use of demagnetizing tensors in compressed form it is important to know how the error of the approx-
imation changes with the rank. The error analysis was carried out using two cube models with 1000 and 125,000 computa-
tional cells. The magnetization was along the z direction and the magnetostatic field was calculated using compressed
demagnetizing tensors with different ranks. For each rank, the approximation of energy was computed, and compared with
the exact value of m2

z =6. The absolute error in energy versus the rank of the approximation is plotted in Fig. 3. It shows that
approximations of the energy obtained in this work show an exponential convergence, which is in agreement with the the-
ory [4].

5. Conclusion

The magnetostatic energy for the ferromagnetic cube is calculated using the demagnetizing tensor and the magnetization
in Kronecker formats. Results of memory savings and CPU time follow theoretically predicted superlinear behavior. This
method outperforms those with the linear scaling for matrix-vector evaluation and energy calculation. However, for dy-
namic micromagnetic simulations, decompression of the field and magnetization into the vector form is required and can
be done in OðN3 þ N2Þ operations.
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